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We consider the mobility of electrons in an environment of static hard-sphere scatterers, which
provides a realistic description of electrons in helium gas. A systematic expansion in the scatterer
density is carried to second order relative to the Boltzmann result, and the analytic contribution
at this order is derived, together with the known logarithmic term in the density expansion. It is
shown that existing experimental data are consistent with the existence of the logarithmic term in
the density expansion, but more precise experiments are needed in order to unambiguously detect it.
We show that our calculations provide the necessary theoretical information for such an experiment,
and give a detailed discussion of a suitable parameter range.

PACS number(s): 51.10.+y, 05.60.+w

I. INTRODUCTION

It has been known for almost 30 years that transport
coeflicients, in contrast to thermodynamic quantities, do
not possess a virial expansion [1]. This insight came orig-
inally as a substantial surprise [2], and the physics behind
it turned out to be very fundamental in nature. Namely,
it is related to the previously unexpected existence of
long-range dynamical correlations in equilibrium fluids.
As a specific example, let us consider the diffusion of a
tagged particle in a fluid. The classic method for set-
ting up a virial or density expansion for the diffusivity
was based on a generalized Boltzmann equation [3]. In
this method one constructs a virial expansion for the col-
lision operator by taking into account collisions of the
tagged particle with a successively increasing number of
scatterers which is, however, finite at every order in the
expansion. This is analogous to the Ursell-Mayer clus-
ter expansion for thermodynamic quantities [4]. Alter-
natively, one can use the Green-Kubo or time correlation
function method [5]. Both methods yield identical formal
results for the density expansion of the diffusivity D (or
any other transport coefficient),

D/Dg =1+ Din + D2n* + O(n?) , (1.1)

where Dp is the Boltzmann result for the diffusivity, n is
the dimensionless density of the fluid, and D;, D, etc.
are the “virial coeflicients.” The surprise consisted in
the realization that the coefficients in this expansion are
infinite past a certain order that depends on the dimen-
sionality of the system [6]. It was soon realized that these
infinities signalize the presence of a logarithmic density
dependence in the expansion given by Eq. (1.1) [7]. For
instance, in a three-dimensional (3D) system, the co-
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efficient D, is n dependent, and goes for small n like
Dy ~ Inn + const, so that Eq. (1.1) must be replaced by

D/Dp =1+ Din+ Dyjan®lnn + Dan? 4 o(n?) , (1.2)

where D51, and D, are numbers, and o(n?) denotes terms
that vanish faster than n? for n — 0. The functional form
of the higher coeflicients is not known. The physical rea-
son for the breakdown of the density expansion, and the
appearance of the logarithmic terms, is a collective effect:
Ring collisions, in which the scattered particle collides
with a scatterer, and then visits a number of other scat-
terers before returning to the original one, turn out to
lead to infinite phase space volumes if a finite number of
scatterers is considered, and hence the distances between
scatterers, and the times traveled between them, are al-
lowed to become arbitrarily large. These collision events
are, however, unphysical, because the inevitable presence
of scatterers that do not belong to the particular cluster
under consideration does not allow the effective distance
traveled between successive scattering events to be sub-
stantially longer than a mean-free path. Properly taking
into account this mean-free-path damping of the scat-
tered particle’s trajectory leads to the mentioned loga-
rithmic term. The latter represents dynamic correlations
in the fluid which extend over a distance of a few mean-
free paths (or a time equal to a few mean-free times),
which in the limit of small densities becomes much larger
than the effective particle size, or the range of the inter-
molecular force. In contrast, static correlations in classi-
cal equilibrium fluids extend only over the range of the
intermolecular force, which is the reason why the cluster
expansion works for thermodynamic quantities.

Due to its bearing on fundamental aspects of the statis-
tical mechanics of both equilibrium and nonequilibrium
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systems, and its close connection to related effects, such
as long-time tails [1], the breakdown of the density expan-
sion for transport coefficients has generated substantial
interest over almost 30 years. The existence of the loga-
rithmic term has been ascertained theoretically for a vari-
ety of classical systems, both real fluids and model fluids,
and for a variety of transport coefficients [7]. It has also
been seen in computer simulations of a two-dimensional
(2D) Lorentz gas [8], where the logarithm appears at first
order rather than at second order due to the lower di-
mensionality. It has also been established that the same
effect occurs for quantum-mechanical scattered particles
[9]. However, its experimental verification has proven to
be extraordinarily difficult [10]. The reasons for this are
manifold. First, the detection of any logarithmic term
on an analytic background is very difficult due to the
slow variation of the logarithm. Second, for 3D systems
the effect appears only at second order in the density
expansion beyond the Boltzmann equation. Third, the
coefficients in Eq. (1.2), or in the equivalent expressions
for other transport coefficients, are not known for classi-
cal fluids with realistic interaction potentials. Even for a
hard-core model fluid it has so far not been possible to
calculate the coefficient D, of the analytic term at second
order. Since the detection of a logarithmic term on an
unknown background is a hopeless task, this essentially
precludes the use of 3D classical fluids for a convincing
observation. On the other hand, 2D classical systems are
very hard to realize. Furthermore, estimates of the val-
ues of the coeflicients in classical systems show that for
those transport coefficients that can be accurately mea-
sured, like, e.g., the shear viscosity, the coefficient of the
analytic second-order term is much larger than the one
of the logarithmic term. This is because the former con-
tains essentially excluded volume effects, which dominate
over the ring collision contributions.

These difficulties raise the question whether quantum
systems are possibly better suited for an experimental
verification of the logarithmic term than classical ones.
2D quantum systems, although easy to realize, are not
suitable since transport in 2D quantum systems is patho-
logical due to localization effects [11,12]. This leaves 3D
quantum systems. Here the effect also occurs only at
second order, but otherwise the situation is much more
favorable than in the case of 3D classical systems, as we
will see. A chief advantage is the fact that the hard-
core Lorentz gas model, i.e., a tagged particle moving in
an array of static hard-sphere scatterers [13], is a much
better approximation for certain quantum systems than
for any classical ones. 3D quantum systems are there-
fore the most promising candidates for an experimental
observation of the nonanalyticity.

A particularly promising system consists of electrons
injected into helium gas of density n [14]. The electron-
helium scattering process is well known, and its charac-
teristics are convenient from a theoretical point of view.
The scattering length, a, = 0.63 A, is positive, and for
thermal electrons the energy dependence of the scat-
tering cross section is negligible. Since the electrons
behave quantum mechanically, the thermal wavelength,
A = (2n2A%B/m)Y/?, with B = 1/kgT and m the elec-

tron mass, provides an additional length scale besides a,
and the mean helium atom separation n~1/3. The lead-
ing parameter in the density expansion is naZ\ = \/4xl
(15], with | = 1/4wna? the mean-free path, and a,/A
serves as an additional small parameter. The mass ratio
my./m ~ 10 makes it a good approximation to treat the
helium atoms as static scatterers. Finally, the low density
of the injected electrons allows one to neglect Coulomb
interaction effects between the electrons. An experiment
[14] which measures the mobility of the electrons (which
is related to the diffusion coefficient by an Einstein rela-
tion) thus constitutes an almost ideal realization of a 3D
quantum Lorentz model.

The density expansion for the transport coefficients of
the 3D quantum Lorentz model has been considered in
Refs. [15,16]. The experimentally relevant quantity is the
mobility, u, at finite temperature. The leading terms in
the expansion for u, analogous to Eq. (1.2), are

p/pe =14+ p1 X + p21ax? In x + pax?

+0(xa,/A) + o(x?), (1.3a)

with
py = —w/2/6 (1.3b)
M2in = (7% —4)/32 . (1.3c)

Here pp(T) = (4el/3)(2mrm/B3)~'/? is the Boltzmann mo-
bility, and x = A/nl and a,/\ are small parameters.

Adams et al. [17] have used Egs. (1.3) to analyze exper-
imental data obtained from time-of-flight measurements
for electrons in He and H,. Their main objective was
to refute the popular misconception that pu; = pg 1, =0
[18], which arose from an inappropriate application of
localization ideas to the low-density regime. Reference
[17] concluded that the existing experiments give very
good agreement with the value of p; given in Eq. (1.3b).
This success raised the question whether the same sys-
tem could be used to observe the logarithmic term. In the
absence of information about u, this would involve mea-
suring the conductivity over a gas density range that is
sufficient to observe the logarithmic dependence directly.
This is clearly hopeless. However, if y; was known, then
the logarithmic term would just provide a weakly density
dependent correction to it, and a sufficiently accurate ex-
periment at fized gas density would be sufficient to probe
the existence of the logarithmic term. This background
provided the motivation for a calculation of us, the result
of which has been reported in a recent short communica-
tion as [19]

pz =0.236... . (1.3d)

The purpose of the present paper is to provide the tech-
nical details of the calculation whose result was reported
in Ref. [19]. We will also give a more detailed discussion
of how our result can be used to design an experiment
capable of observing the logarithmic term. The paper is
organized as follows. In Sec. II we first define the model,
and set up a diagrammatic perturbation theory for the
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conductivity at zero temperature. We then perform the
calculation to second order in the scatterer density, and
convert the result into an expression for the experimen-
tally relevant temperature-dependent mobility. Section
III contains a detailed discussion of the relevance of our
results for a proposed experiment to detect the logarith-
mic term in the density expansion. Some technical details
are relegated to two appendixes.

II. DENSITY EXPANSION FOR THE MOBILITY
A. The model

We consider a model of noninteracting electrons mov-
ing in three-dimensional space, and scattering off static,
uncorrelated, and randomly located impurities with den-
sity n. The electron-impurity interaction can be charac-
terized by the scattering cross section o, = 47 a2, where
a, is the scattering length.

The Hamiltonian for this system is

H = Z (Ek - y‘) a’;,aak,d + Z V(q) a’i‘;,aa’k_(ha I
k,o

k,q,0
(2.1)

where aLa, ax,. denote creation and annihilation oper-
ators for the electron with wave number k and spin o,
1 is the chemical potential, V(q) is the Fourier trans-
form of the electron-impurity scattering potential, and
ex = k%/2m is the kinetic energy with m the electron
mass. In this section we use units such that 2 = 1.

We will use the standard Edwards diagram technique
[20]. Accordingly, we consider retarded (R) and advanced
(A) zero-temperature Green’s functions,

1
R,A
Giep (@) = <k'w —H %40

and their impurity-averaged counterparts,

p> (2.2a)

1
w4+ €F —6k+zf’A(w) ’

(G (W) = bup (2.2b)

where ep = pu(T = 0) is the Fermi energy, and Ef’A (w) is
the self-energy. w measures the energy distance from the
Fermi surface. Ultimately we will take the limit w — 0
to obtain the static mobility or conductivity.

We will restrict our considerations to pure s-wave scat-
tering, which is equivalent to the assumption of pointlike
scatterers. This approximation will substantially sim-
plify all calculations. Its justification and limitations will
be discussed in Sec. III. For pure s-wave scattering the
self-energy reads to linear order in the impurity density,

2RAW) = A+if2r + O(R?), (2.3)

with 7 = Im/kp the mean-free time. The real part of
the self-energy, A, is to this order independent of the
wave number k. Even though it is formally infinite for

pure s-wave scattering, it therefore strictly renormalizes
the chemical potential or the zero of energy, and can be
neglected. Although we will want to effectively expand
the full Green’s function to second order in the impurity
density, we will find it convenient to use the self-energy
as given by Eq. (2.3) and to include higher-order con-
tributions to the self-energy explicitly at a later stage.
We therefore define, for later reference, an auxiliary zero
frequency Green’s function,

1
GBRA_- - | 2.4
k €r —ex £ 1/27 (242)

We will also need the free electron Green’s function,

1
Gl((O)R,A _

_ . 2.4b
er — € £ 20 ( )

B. Diagrammatic expansion of the conductivity

It is convenient to calculate the conductivity, o, of
degenerate electrons at 7' = 0, and then to convert to
the experimentally relevant finite-7' mobility by means
of an Einstein relation and a Kubo-Greenwood formula.
A general scheme for a diagrammatic calculation of the
conductivity within the context of the model defined in
Sec. II A above has been given in Ref. [15]. The result
was a density expansion for the conductivity of the form

olop =140 L+a’ 1 2l 1
B= Y okpl T2\ okp1 ) P\ 2kp
1 2
+o2 | =5— | +O(as/l) +o(1/(kpl)?), (2.5)
2kpl

with op the Boltzmann conductivity, kg the Fermi wave
number, and a,kr considered small. There is no need to
repeat the description of the general scheme here. Suffice
it to say that the real part of the dynamical conductivity
of noninteracting electrons at zero temperature can be
expressed in terms of the Green’s functions defined in
Eq. (2.2) by means of the Kubo-Greenwood formula,

2

Reo(w) = p—

2 Re Z ’U(k) (gl{";p (UJ) g;?,k(w = 0)
k,p

~Gicp () Gpac(w = 0)) v(p) , (2.6)

where v(k) = k- q/q, with q an arbitrary fixed vector,
is the current vertex. The brackets (---) denote the av-
eraging over the random positions of the impurities. We
will perform this average by means of standard diagram-
matic methods [20]. We note that this is not the only
possible way to calculate the conductivity. One could,
for instance, use quantum kinetic theory instead. How-
ever, it is known from calculations of the coefficient o7 in
Eq. (2.5) that the diagrammatic method [15,16] leads to
much simpler calculations than quantum kinetic theory
[21]. Technically, our calculation is a systematic exten-
sion of the work of Refs. [15] and [16]. These authors had
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already identified all diagrams that contribute to o; and
021n, and calculated both coefficients. For our purposes
we will now have to calculate the previously considered
diagrams to O(n2) instead of O(n%1nn), and to identify
and evaluate all diagrams that contribute to o2, but nei-
ther to oy nor to o31,.

Let us start by introducing symbols and abbreviations
for the diagrammatic elements of our perturbation the-
ory. The averaged Green’s function, Eq. (2.4a), we de-
note by a directed full line, with an arrow pointing right
and left for the retarded and advanced Green’s function,
respectively. We further denote the difference between
the Green’s function given by Eq. (2.4a) and the free elec-
tron Green’s function, Eq. (2.4b), by a directed line which
carries a triangle. The impurity potential is denoted by
a dashed line, and the impurity density by a cross; each
cross with a dashed line running through it corresponds
to a factor u = 1/2nr N7, with Np = kpm/27? the free
electron density of states per spin at the Fermi level. The
current vertex v(k) is represented by a triangle. All of
these diagrammatic elements can be seen in Fig. 1. We
also define the quantities € = 2mep and v = m/7.

In terms of these quantities, the simplest diagrammatic
contribution to Eq. (2.6) in the limit of zero frequency
is the simple bubble shown in Fig. 1(a), and the cor-
responding diagram with the direction of the lower line
reversed. The analytic expression for this contribution to
the static conductivity, which we denote by 0 (1,), reads

2
[
O(1a) = —— Re > ) [GEGE - GEGE] . (2.7a)

k

Performing the integral is simple, and yields

O(1a) = 0B [1+g‘(%)2+0((%)4):| . (2.7b)

Diagram 1(a) thus contributes 3/2 to the coeflicient o5,

a result which we record in Table 1. For later reference

we also give explicitly the Boltzmann result for the con-
ductivity,

_ €232 en.T

78 = 32y = m ]

(2.7¢)

X
PN IS SN
(a) (b) (c)

FIG. 1. The simple bubble (a), and two diagrams contain-
ing the “triangulated” Green’s function (b), (c). Together
with diagrams (b) and (c), their complex conjugates (c.c.)
also contribute.
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TABLE 1. Values of the diagrams as shown in Figs. 1-5.
Only the contribution to the coefficient o2 in Eq. (2.5) is given;
for contributions to lower orders see Refs. [15,16]. See the text
for further explanation

Diagram o2 Diagram o2
1(a) 3/2 4(f) —-IL+20;
1(b) —7/2 4(g) 4ln2-2
1(c) 1 4(h) 2—-4In2
2(a) 6InQ/e+4—12In2 4(i) 6L/2-1I.
2(b) 8 5(a)+(b) 0
2(c) —2—4In2 5(c)+(d) 0
2(d) w2/2 + 31, /2 5(e) w2 /9
2(e)+(f)+(g)+(h) —-1-7*—2In2 5(f) 0
3(a)+(b)+(c) m2/4—2In2 5(g) 272 /3
3(d) —I 5(h)+(@{) w°
4(a) ~L,/2 5G)+(k) 0
4(b) —I,/2 5(1)+(m) 0
4(c) -1 5(n)+(o) 0
4(d) —2In(Q/+/€) +4In2 5(p) 0
4(e) 2ln2 -1

with the free electron density n. = €3/2/372%, and e the
electron charge. Notice that op is a function of ¢; this
will be of importance later. We also note that the simple
bubble is the only diagram for which we have to consider
the GEG® contribution to Eq. (2.6). All other diagram-
matic contributions to this term turn out to be of higher
than second order in the impurity density.

Figure 1 also shows two diagrams that have to be con-
sidered due to our choice of the basic Green’s function,
Eq. (2.4a). If we had calculated the self-energy in the

A TR X
(a) (b)
D D

(c) (d)

(e) (f)
(g) (h)

FIG. 2. The diagrams that were considered previously in
Refs. [15] and [16].
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basic .Green’s function to second order in the impurity
density these diagrams would not appear. Note the ap-
pearance of the “triangulated” Green’s function, which
is necessary to avoid double counting. The evaluation
of these diagrams is also straightforward, and the results
are given in Table I.

‘We now turn to the diagrams that were discussed pre-
viously in Refs. [15,16], and were calculated there to
O(n?lnn). They are shown again in Fig. 2. We find that
all of these diagrams contribute to the analytic term at
second order as well. The diagram shown in Fig. 2(a) is

I

0(2a) = 2u? Z [v(k)]* Re (GEG Gk

k,p,q

—P—q

—on (%) grewa Re [ 407 T [(e=in) U@ = T (@) = (e i) 7 5T )]

To obtain the second equality we have repeatedly used
the identity

Gy Gf = Eﬂ (GE -G¢) (2.9)
and defined two functlons,
1 1
+= = .10
J7(q) /dke—k2+i'y Py (2.10a)
and
Jtt(q) = [ dk ! ! . (2.10b)
e—k2+iy e—(k—q)2+1iy

The same functions had been defined in Refs. [15,16],
and all diagrams can be expressed in terms of them. For
our present purposes we need a more accurate evaluation
of these functions than the one that was given before.
It turns out that both integrals can be done exactly in
closed form, a task which we relegate to Appendix A.
Using the result in Eq. (2.8), a calculation sketched in
Appendix B leads to

(a) = 0B | -7 (;) (21) [61n(Q/V/e) + 4 — 121n2]

wo((2))

The In Q contribution stems from the real part of the self-
energy contribution to the upper electron line in diagram
2(a). It thus constitutes just a shift (albeit an infinite one
in the case of a pointlike potential) of the chemical poten-
tial, like the constant A in Eq. (2.3) which we neglected
earlier. We therefore expect the In @ term to disappear
upon considering the experimentally relevant mobility in-
stead of the conductivity. We will find this expectation
to be borne out later, cf. Sec. IIC. The remaining dia-
grams in Fig. 2 can be calculated along the same lines,

(2.11)

of special interest, since for pure s-wave scattering it is
found to be ultraviolet divergent. We therefore introduce
an ultraviolet cutoff @ ~ 1/a,, and discuss this diagram
in some detail. We stress that this divergence is due to
an unphysical treatment of the short-range part of the
electron-impurity interaction and often occurs when one
uses an s-wave scattering approximation. It should not
be confused with the physically more interesting logarith-
mic singularity in the density expansion of the transport
coefficients which is due to long-range collective effects.
The analytic expression corresponding to Fig. 2(a) is

GE_4GE GL)

(2.8)

I

and the results are given in Table I.

The diagrams shown in Figs. 2(d)-2(h) allow for gen-
eralizations which all contribute to o2. These gener-
alizations are obtained by replacing the “ladder” and
“crossed-ladder” elements in these diagrams by the re-
spective infinite resummations. The resulting diagrams
are shown in Fig. 3. Note that the ladder, or “diffuson,”
and crossed-ladder, or “Cooperon,” resummations in Fig.
3 start with three rungs each to avoid double counting
of the diagrams of Fig. 2. The infinite resummations are
again easily expressed in terms of integrals over the func-
tions J*t and J*~, and the results are listed in Table
I. The reason why these diagrams with increasing num-
bers of impurity lines, and hence increasing numbers of
factors v ~ n, all contribute to the same order lies in

(b)
,x‘
’/
+CC.
////,
(d)
[ [
- o H
- e il

FIG. 3. Infinite resummations that are derivatives of dia-
grams 2(d)-2(h).



52 DENSITY EXPANSION FOR THE MOBILITY IN A QUANTUM . .. 617

the fact that the diffusion pole contained in the ladder
and crossed-ladder resummations leads, with increasing
order, to increasingly singular infrared behavior of the
integrand, which is cut off only by «. The cancellation of
these two effects leads to all of these diagrams being of
the same order in v or n. By the same argument it follows
that these are the only infinite resummations [given our
definition of skeleton diagrams by means of Eq. (2.4a)]
that contribute to the desired order. In particular, dia-
grams that contain more than one diffusion pole do not
contribute.

We now turn to other skeleton diagram contributions.
All relevant diagrams with three impurity lines (as far
as they were not included in Fig. 2) are shown in Fig. 4,
and all those with four impurity lines are shown in Fig.
5. The evaluation of these diagrams offers no particular
difficulties, except that some care has to be exercised
since the vector nature of the current vertex leads to some
nontrivial angular integrations. Of course, all diagrams
that contain the same self-energy piece as diagram 2(a)
also contain the In Q contribution that is characteristic
for this diagrammatic element. The results are again
given in Table I.

Table I lists the contributions of all diagrams to the
coefficient o3 in Eq. (2.5). In some cases we have found
it convenient to combine some diagrams before evaluation
of the integrals, and this is indicated in the table. The
coefficients oy and o3 1, have been calculated in Ref. [16]

with the result
o1 = —41/3, o2 1n = (7? — 4)/2 . (2.12)

Table I contains three integrals which we could not reduce
to tabulated ones, viz.,

ldx 1—z\12
I, = — 11 = 4. . .
L /0 . [n(1+x)] 4.207.. ., (2.13a)
1 2
I_/da:x n(222)] = 2772 (2.13b)
2= e 72, .
e~ X, /,’*:7{ ~ XX
2
(a) (b) (c)
//>k/;,\::,\<\\ e X ;;((:\\
(d) (e) (f)
K S SH
2 2
(g) (h) )

FIG. 4. Skeleton diagrams with three impurity lines.

A A P
40} +ce. (‘) +CC. 10} ce
2 2 o

N
(a) (b) (c)

PRl X

D D CHe
) 2
(@) (e) (f)
o s Ko P
z '\ " i
N
o) (h) (i)
,/*}:\A/\'x - 7/)5\ . l’,rx—\‘\\
Q +cC. @ +cC
2 N ’
() (K o
R TR . e
' - i % /
2 5 \‘/
(m) (n) (o) *
L
2
(p)

FIG. 5. Skeleton diagrams with four impurity lines.

oo d -1
I; = E/ —f (arctanz)* [1 _1 arctanz}
T Jy <« z
=7.716.... (2.13¢)

Summing all the contributions listed in Table I we ob-
tain

oy = 4lD(Q/kF) + 2—27{'2 —14In2+7—-1; + I, — I3
= 4ln(Q/kp) +3.22--. (2.14)

This concludes our calculation of the zero-temperature
conductivity. In order to compare with, and make ex-
plicit predictions for, experiments it is desirable to con-
vert this result into the corresponding one for the mo-
bility at nonzero temperature. In order to do this, we
will need the density of states to second order in the im-
purity density as well as the conductivity. The density
of states is easily obtained from the Green’s function via
the relation

N(e) = -% S Im (GE,(w=0)) , (2.15)
k,p

and to second order it is sufficient to consider the dia-
grams shown in Fig. 6. The calculation is easy, and we
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X X P
g 7’ N
GE)e—o— = —— ¢ =y o +
K K K k k-9 K
X
e X X
+ + [ lon +

FIG. 6. The Green’s function to second order in the impu-
rity density.

obtain
N(e) = NO I:l + (%)2 (—% +2 In(Q/2€) — 2 ln2)

+0(+%) (2.16)

Here N(©) = 2Np = mkp/n? = m\/e/n? is the free elec-
tron density of states.

C. The electron mobility

In a time-of-flight experiment like the one described in
Ref. [14] the measured observable is the electron mobility,
which is given by u(T) = o(T)/en(T), where o(T) is
the temperature-dependent conductivity, and n(T') is the
electron particle number density. o(T') can be obtained
from Eq. (2.5) by means of the Kubo-Greenwood formula
[22] and n(T') from the density of states, Eq. (2.16). We

thus have
)a(e)/e/:o def()N(e) , (2.17)

uw(T) = /Ooo de ( _a‘zf

with o(€) and N(¢) from Egs. (2.5), (2.12), (2.14), and
(2.16), respectively, and f(€) the Fermi function. In writ-
ing all of these quantities as functions of € = k% one has
to keep in mind that the electronic mean-free path [ is
the energy-independent parameter which has to be kept
fixed. We are interested in the limit of small electron den-
sity, where the Fermi function can be replaced by a Boltz-
mann distribution, f(e) ~ exp(Bu)exp(—B¢). Doing
the integrals we obtain Eq. (1.3a) for the temperature-
dependent mobility with u; and us), as given by Egs.
(1.3b), (1.3c), and

36
—2421,1n2 = 0.236... , (2.18)

1 [=2
#Z:E [—(55+90)—C+8—101n2—I1+Iz—I;:,J

where C is Euler’s constant. As expected [see the discus-

sion after Eq. (2.11)] the mobility is independent of the
cutoff Q.

III. DISCUSSION

Since the mobility is directly measured in a time-of-
flight experiment of the type reported in Ref. [14], the
density expansion for the mobility as given by Egs. (1.3),
(2.18) can be directly compared with experiment. We
split the discussion of the experimental relevance of our
result into three separate questions. (1) How accurately
does our quantum Lorentz model describe electrons in-
jected into helium gas? (2) How do our results compare
with existing data? (3) What kind of experimental effort
would be necessary to unambiguously detect the loga-
rithmic term in the density expansion?

The first question has to be divided into idealizations
that are inherent in the model, and effects of additional
approximations we have made. Let us start out with the
latter. As mentioned in the Introduction, there are three
independent length scales in the model, viz., the mean
scatterer separation n~1/3, the mean-free path [, and the
thermal wavelength A. Consequently, one can form four
different dimensionless densities, viz., nA3 , nA%a,, nia2,
and nal. The first two do not appear in the Lorentz
model [21]. Of the other two, the first one is essentially
the ratio of the thermal wavelength to the mean-free
path, while the second one describes an excluded vol-
ume effect that is also present in classical systems. We
have kept only the leading (for A/a, > 1) one of these
two parameters, nAa2. That is, we have neglected terms
of relative order a,/A. At helium temperature, and with
the electron-helium scattering length (a, = 0.63 A), the
value of this small parameter is a,/A & 10~3. The pre-
factor can be estimated from classical Enskog theory, or
from the exactly known result for the classical Lorentz
model [23], and turns out to be of order unity. On the
other hand, a typical value for the expansion parameter x
in Eq. (1.3a) is x = 0.1 [14]. In our expansion, excluded
volume corrections to the term linear in x will therefore
roughly be of the same order as terms ~ x3. We can
thus safely neglect excluded volume effects, unless x is
chosen to be too small, see below. It is also worthwhile
to point out that the excluded volume terms have a differ-
ent temperature dependence than the leading terms that
were kept in Eq. (1.3a). In principle it would therefore be
possible to separate these contributions experimentally,
although this may be hard to do in practice.

Another approximation has been our restriction to
pure s-wave scattering. This amounts to neglecting cor-
rections of O(kr/Q) ~ O(kras) in Eq. (2.5), which
translates into corrections of O(a,/A) in Eq. (1.3a). Non-
s-wave scattering effects and excluded volume effects are
therefore comparable.

Idealizations that are inherent in the model include the
static nature of the scatterers, the assumption that the
scatterers are uncorrelated, and the single-electron ap-
proximation. The effects of static correlations between
the scatterers can be easily estimated from, e.g., Baym’s
formula for the electron scattering rate, which can be ob-
tained as a variational solution of the Boltzmann equa-
tion [24]. For the case of static impurities, Baym’s for-
mula contains a static impurity structure factor S(g) un-
der the momentum integral that determines the scatter-
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ing rate. For uncorrelated scatterers, S(qg) = 1. Devi-
ations of S(g) from unity, and hence static correlations
between the scatterers, are again due to excluded volume
effects which we have estimated above. The dynamics
of the helium gas lead, at temperatures around 4 K, to
corrections of the same order, which can be seen as fol-
lows. A typical value for the scattering time is 7 ~ 10712
s. During this time the thermal velocity of the helium
atoms leads to a displacement d on the order of 1 A.
This is comparable with the scattering length, and the
effect on the electron mobility is thus on the order of
d/A ~ a,/A, which is again the magnitude of the ex-
cluded volume effects. Finally, one has to estimate the
effects of the Coulomb interaction, since any real exper-
iment has to deal with more than one electron. Let us
use the parameters of Schwarz’s experiment [14] for this
purpose. A typical value for the electron current den-
sity was j = 10712 Ccm™2 571, and for the drift velocity
v &~ 10* cm/s. This corresponds to an electron density
ne = 103 cm~3. The Coulomb energy E. ~ ez/ne_l/s is
then less than 1% of the kinetic energy, kgT. If desirable,
Coulomb effects can be made even smaller by decreasing
the electron density. .

We conclude from the preceding discussion that both
the model and our additional approximations are ade-
quate for a description of electrons in helium gas in a
parameter range of interest to us, namely at tempera-
tures and densities such that our expansion, Eq. (1.3a),
is meaningful. Let us now discuss the relation of our re-
sult to existing [14] and possible future experiments. The
main remaining uncertainties in this relation arise from
the terms of o(x?) and O(xas/A) in Eq. (1.3a). The
former are undoubtedly nonanalytic, but neither their
functional form nor their magnitude are known [25]. In
order to estimate their importance we therefore have to
rely on some assumptions. First, it is plausible to neglect
the nonanalyticity, and to assume that the coefficients in
the x expansion are all of roughly the same magnitude.
In the Kubo-Greenwood integration, Eq. (2.17), the x3
term picks up an extra factor of /7, and so we estimate
o(x?) =~ psx® with —2/mus S ps S 24/wuz. Here we
have neglected the, presumably weak, x dependence of
p©3, and have allowed for a safety margin in the form of
an extra factor of 2. Obviously, the relative effects of us,
and the other unknown terms of higher order, become
smaller with decreasing values of x. On the other hand,
the excluded volume effects are of O(xa,/)), and become
important if x becomes very small. However, as long as
they are small compared to the second-order terms which
we keep in Eq. (1.3a), i.e., as long as x? > xa,/A, or
X > as/A, they can be neglected. This means there is a
window of x values for which the excluded volume terms
are negligible, but the higher order in x terms is not yet
important.

We now define, as a convenient quantity directly com-
parable with experiment,

f(x) = [w(T)/uB —1— mx] /X . (3.1a)

Our theoretical prediction for this quantity is

_2} 3
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FIG. 7. The reduced mobility f, as defined in Eq. (3.1a), vs
the density parameter x = A/wl. The theoretical prediction
is for f to lie between the two solid lines. The experimental
data are from Fig. 9 of Ref. [14] with error bars estimated as
described in the text. The broken lines show what the theo-
retical prediction would be in the absence of the logarithmic
term in the density expansion.

f(x) = pawlnx + p2 £ p22v/7x , (3.1b)
with py from Eq. (2.18), and p2 1, from Eq. (1.3c). Let
us consider the experimental results obtained by Schwarz
[14] at helium temperature. At T' =4.2 K, a He gas den-
sity » = 102! cm ™3 corresponds to x = 1, and data were
obtained for x as low as 0.08. In Fig. 7 we show the the-
oretical prediction, Egs. (3.1), for 0 < x < 0.7 together
with Schwarz’s data. The error bars shown assume a to-
tal error of 3% in p/up and 4% in x. To illustrate the
effect of the logarithmic term the figure also shows what
the theoretical prediction would be if 021, in Eq. (2.5)
was zero.

We are now in a position to draw the following con-
clusions. (1) The existing data are certainly consistent
with the existence of the logarithmic term, but are not
accurate enough to be conclusive. (2) A repetition of this
experiment in the region 0.1 < x < 0.2 with an accuracy
improved by at least a factor of 10 would be sufficient
for a convincing test of the logarithmic term’s existence.
This range of x values is particularly suitable because
excluded volume effects are negligible. At larger x values
the uncertainty due to the x® terms makes the theoreti-
cal prediction meaningless, and at lower x values errors
in determining x translate into very large errors in f(x).
Also, the excluded volume effects become noticeable at
smaller x. (3) The type of experiment discussed, i.e.,
a time-of-flight measurement for electrons injected into
helium gas, probably constitutes the most favorable op-
portunity for an experimental check of the existence or
otherwise of the logarithmic term in the density expan-
sion for transport coefficients. We hope that the forego-
ing discussion will stimulate a new precision experiment
on this system.
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APPENDIX A: EVALUATION OF THE
INTEGRALS J++(q) AND J+~(q)

We have seen in Sec. II that the diagrams can be con-
veniently expressed in terms of the two integrals J*+(q)
and J*~(q) given by Egs. (2.10). In Refs. [15,16] ap-
proximate representations for these integrals were given,
which are not sufficient for the purposes of the present
paper. We therefore evaluate J*+(g) and J*~(q) ex-
actly. The method we are using actually allows us to
calculate two slightly more complicated functions, viz.,

J T (g,w) = /dk ! !

e—kZ+iy e+w—(k—q)2+iy’
(Ala)

and

ey 5 ()

q2+16u_

After some simplifications we obtain

J++(q’w):_i7r2 ln(\/e+w+2:’)’+\/€+1:’)’—9>
Vetw+iy+e+iv+gq
(Ada)
and

J+—(q,w)__1 <\/6+w—w Vet —q\
q Vetw—iy—etiy+g
(A4b)

In the limit w — 0, J*~
we finally obtain

can be further simplified, and

2Ve+ 1y + 2ve+iy+gq
JH+ “"
(@) = 2etin—q (Aba)
and
2m2 q
Jt7(q) = “— arct —_— ] .
(q) arctan (ZIm\/e——}-T’y) (A5b)

For small v these expressions agree with those obtained

1 1
k2+iy e+w—(k—q)2—iy
(A1b)

Jt (g, w) =/dk p—

J*t*(g) and J*~(q) are obtained as the values of these
integrals at w = 0.

To proceed we introduce spherical coordinates (k, 6,
¢). The integral over the azimuthal angle ¢ is trivial and
gives a factor of 27r. The integration over the polar angle
0 € [0,7] can be written as an integral over z = cos#@
extending from —1 to +1. Using the symmetry of the
integrand then allows us to write

" ! oo k2 1
Jtv =2 d dk
(4,) 7r/0 x/o a—k2|8, —k2—2kqx

(A2)

1
Y ket 2kqm} ’

where o = e+ iy, B, = € + w + ivy — ¢%, and v = *1.
Since the integrand is an even function of k, one can now
extend the k integration to the interval [—oo, c0], and
evaluate the integral by means of the residue theorem.
The remaining integrals over x are elementary, and one
finds

2vy/aB, +q(a—B,) + (a+B.)v/e? + B

R

previously [16].
For explicit perturbative calculations the following for-
mal small-vy expansions are useful:

2\/_

@) = Tl - 2v) -l |12
+7 (f—"_—‘qf - ivrf‘{é(q - zﬁ)) +0(),
(A6a)
r@="- 220w (A

APPENDIX B: EVALUATION OF DIAGRAM 2(a)

To calculate the contribution of diagram 2(a) to the
zero-temperature conductivity we use the expressions for
J**(q) and J*~(q) from Appendix A in Eq. (2.8), which
we rewrite as
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1

Q
O(2a) = 0B (26) Py [Re (=iv) /(; dq ¢* (J**(q))*

Q Q
+Re (i7) / dg ¢® J**(q) J*~(g) — € Re / dg ¢* J**(q) T+~ (q)

Q d Q
~erRe [Cdaq? I T @) +eRe [ da (J++<q))2} L oM.
0 0

Because there is a factor «v/2¢ multiplying the integrals
it is sufficient to evaluate the latter to linear order in +.
Of the five integrals the first two can be straightforwardly
evaluated by using the expansion given in Eq. (A6). The
same is true for the third integral, although the expansion
procedure leads to an ill-defined integral f: dz/(z — 1),
which has to be interpreted in a principal values sense (so
it is zero). Alternatively, one can use the exact expres-
sions for J** and J*~ from Eqgs. (A5), write the arctan
as an auxiliary integral, arctanz = :nfol dy/(1 + y2z?),
and use complex analysis. The result is the same, viz.,

Q
Re / dg ¢* J*H(q) T (9)
(1]

= m(Q — 2Re/e + i) — (747r5/\/E)

—In(Q/2ve) + 0(»?) , (B2)

(B1)

where we have dropped terms that vanish for Q@ — oo.
The fourth term requires the evaluation of an integral,

JElimIm/ dqqln(2'€+ +q)
§—0 2e+iy—q

q+2\/e+z +4 q—-2\/e+z ’

where we have made use of the symmetry of the inte-
grand, and have shifted the poles off the branch cuts
of the logarithm. Standard complex analysis techniques
yield, in the limit of large Q,

J = —27 [In(Q/2v€) —In2] + O(¥?) .

Finally, the fifth integral can be related to the fourth one
by Taylor expanding in . Adding all contributions one
obtains entry 2(a) in Table I.
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